ECG Classification Using Learning Vector Quantization
نویسندگان
چکیده
منابع مشابه
Vector Quantization of ECG
|An improved wavelet compression algorithm for ECG signals has been developed with the use of vector quantization on wavelet coeecients. Vector quantization on scales of long duration and low dynamic range retains feature integrity of the ECG with a very low bit-per-sample rate. Preliminary results indicate that the proposed method excels over standard techniques for high delity compression .
متن کاملClassification of Boar Sperm Head Images using Learning Vector Quantization
We apply Learning Vector Quantization (LVQ) in automated boar semen quality assessment. The classification of single boar sperm heads into healthy (normal) and non-normal ones is based on grey-scale microscopic images only. Sample data was classified by veterinary experts and is used for training a system with a number of prototypes for each class. We apply as training schemes Kohonen’s LVQ1 an...
متن کاملDivergence-based classification in learning vector quantization
We discuss the use of divergences in dissimilarity based classification. Divergences can be employed whenever vectorial data consists of non-negative, potentially normalized features. This is, for instance, the case in spectral data or histograms. In particular, we introduce and study Divergence Based Learning Vector Quantization (DLVQ). We derive cost function based DLVQ schemes for the family...
متن کاملClassification of Incidental Carcinoma of the Prostate Using Learning Vector Quantization and Support Vector Machines
The subclassification of incidental prostatic carcinoma into the categories T1a and T1b is of major prognostic and therapeutic relevance. In this paper an attempt was made to find out which properties mainly predispose to these two tumor categories, and whether it is possible to predict the category from a battery of clinical and histopathological variables using newer methods of multivariate d...
متن کاملEncoded pattern classification using constructive learning algorithms based on learning vector quantization
A novel encoding technique is proposed for the recognition of patterns using four different techniques for training artificial neural networks (ANNs) of the Kohonen type. Each template or model pattern is overlaid on a radial grid of appropriate size, and converted to a two-dimensional feature array which then acts as the training input to the ANN. The first technique employs Kohonen's self-org...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2018
ISSN: 2321-9653
DOI: 10.22214/ijraset.2018.3599